Controls of soil organic matter degradability in thawing Holocene permafrost deposits in the Lena delta, Russia

Sara E Anthony1, Christoph Rosinger2,3, Michael Bonkowski3, Janet Rethemeyer1

1 Institute of Geology and Mineralogy, University of Cologne, Cologne, Germany, 2 Institute of Soil Research, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria, 3 Institute for Zoology, University of Cologne, Cologne, Germany

Email me at sara.anthony@uni-koeln.de or follow me on Twitter: @SEAnthonySci

Methods

Objective

- Determine soil organic matter (SOM) degradability in permafrost deposit
- Identify controls of SOM degradability in Holocene deltaic permafrost
- Estimate soil organic carbon (SOC) loss from OM degradation during thaw

Background

- SOM degradation leads to greenhouse gas release - CH4, CO2, and N2O
- As Permafrost thaws, previously frozen SOM is available for microbial degradation
- Permafrost is thawing at an accelerated rate
- Additional gas release may "tip the scale" towards irreversible, severe climate change

Methods

- 4C signal of bulk SOC
- Elemental Analysis of Bulk SOM (C, N, S)
- Extractable SOM (C, N)
- Basal Respiration
 - 5 g fresh thawed soil, Duplicates
 - 20 °C, 5 Days, Oxygen atmosphere
- Total Neutral and Phospho- Lipid Fatty Acid Concentration (NLFAs or PLFAs)
- External Contract Lab: Microbial ID
- Modified Bligh-Dyer Extraction

Results

- Active zone: ↑ PLFA, ↓ Respiration Rate
- Frozen Soils: ↑ PLFA, ↑ Respiration Rate
- Where C:N Ratios and NLFA peak, we observe peaks in Respiration Rates
- Areas of higher C:N ratios – less degraded OM, but C:N of profile within average permafrost range
- Low extracted C:N ratios suggest mostly microbial origin

Whole Profile Correlations (Spearman’s R)

<table>
<thead>
<tr>
<th></th>
<th>% TOC</th>
<th>C:N</th>
<th>% WC</th>
<th>Resp.</th>
<th>PLFA</th>
<th>NLFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>C:N</td>
<td>0.80***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% WC</td>
<td>0.56**</td>
<td>0.59**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resp.</td>
<td>0.63***</td>
<td>0.57**</td>
<td>0.94***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLFA</td>
<td>0.63***</td>
<td>0.33</td>
<td>0.04</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLFA</td>
<td>0.81***</td>
<td>0.58**</td>
<td>0.68***</td>
<td>0.77**</td>
<td>0.45</td>
<td></td>
</tr>
</tbody>
</table>

Significance: *** = p < 0.001; ** = p < 0.01; * = p < 0.05

Future Work

- Analysis of Fe and Mn along profile
- Pre-Post-Respiration NLFA/PLFA analysis
- Specific lipid analysis (alkanes, alcohols, phospholipid ether lipids)

Acknowledgements

This work would not be possible without help from the technicians in the AG Rethemeyer and AG Bonkowski laboratories, thank you! Samples were collected in 2014 by Stephen John. A special thanks also to my co-authors for their guidance and time.

References
